Why R32

ERIC KRAVITZ

TECHNICAL SUPPORT & TRAINING MANAGER

Environmental Challenges Driving Industry Transitions

2016

Global Warming Potential (GWP):

The potential for a gas to trap heat in the atmosphere, resulting in climate change. Ozone Depletion Potential (ODP):

The potential for substances to reduce the amount of ozone in the atmosphere that blocks harmful radiation from the sun. 1985

Ozone Depleting – High CFC/HFC

Non-Ozone Depleting – high GWP

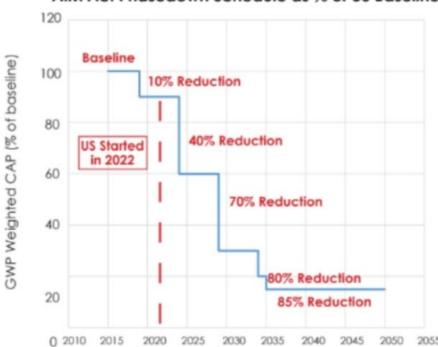
Kigali Amendment (HFC) Phase Down

ASHRAE 34 "R"-#	ODP	GWP	Composition
R-410A	0.0	2,088	R-32/125
R-454B	0.0	466	R-32/1234yf
R-32	0.0	675	CH ₂ F ₂ (HFC)

Montreal Protocol (CFC/HCFC)

Phase Out

ASHRAE 34 "R"-#	608	Composition
R-12	1.00	CCI ₂ F ₂ (CFC)
R-22	0.50	CHCIF ₂ (HCFC)
R-410A	0.0	R-32/125


High GWP HFC's: > 700 GWP

PHASEOUT TIMELINE 2020 The American Innovation and 2021 Manufacturing (AIM) Act is enacted by Congress. The AIM EPA Administrator Michael S. Act directs the EPA's focus to Regan signs the official final the phasedown, substitution, rule for the phasedown of HFC and management of HFC refrigerants. The final rule puts refrigerants, including R-410A. forth a plan to reduce HFC refrigerant production by 85% over 15 years. 2022 HFC production will decrease by 10%. REFRIGERAN 2024 410A HFC production will decrease by 40% 2029 HFC production will decrease by 70%. 2036 2034 HFC production will HFC production will decrease by 85% decrease by 80%.

**Baseline established from 2019 full R410a production amount

AIM Act Phasedown Schedule as % of US Baseline

Phaseout

June 19, 2024	The EPA expanded the ruling
January 1, 2025	The Manufacture or Import of non-3ph VRV Equipment, and Products of all phases containing high GWP HFC's will be prohibited.
January 1, 2026	The Sale and Installation of non-3ph VRV Systems containing high HFC's will be prohibited The Manufacture or Import of 3ph VRV Equipment containing high GWP HFC's will be prohibited.
<u>January 1, 2027</u>	The Installation and Sale of 3ph VRV Systems containing high GWP HFC's will be prohibited

The <u>Installation and Sale</u> of *Products* containing high GWP HFC's will be prohibited.

EPA FINAL RULING Retrofits of Existing Systems

AIM Technology Transition re: "Date Of Installation"

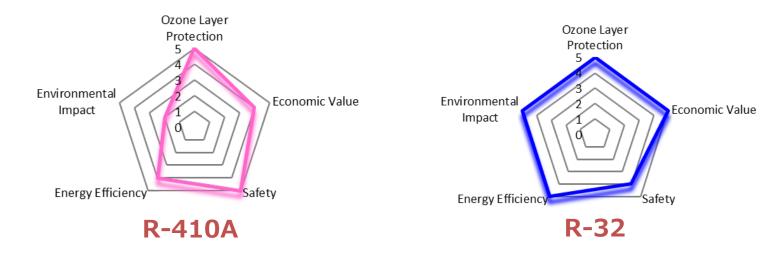
Retrofits of Existing Systems Allowed but not "Complete System installs"

- R-410A components, heat exchangers, valves are not impacted by the TT Rule
- Individual R410A split ODU's, indoor coils & ahu's all can continue to be installed indefinitely*

*MUST MEET DOE REGIONAL GUIDELINES

Industry Regulatory Update

- R32 Benefits
- Flammability

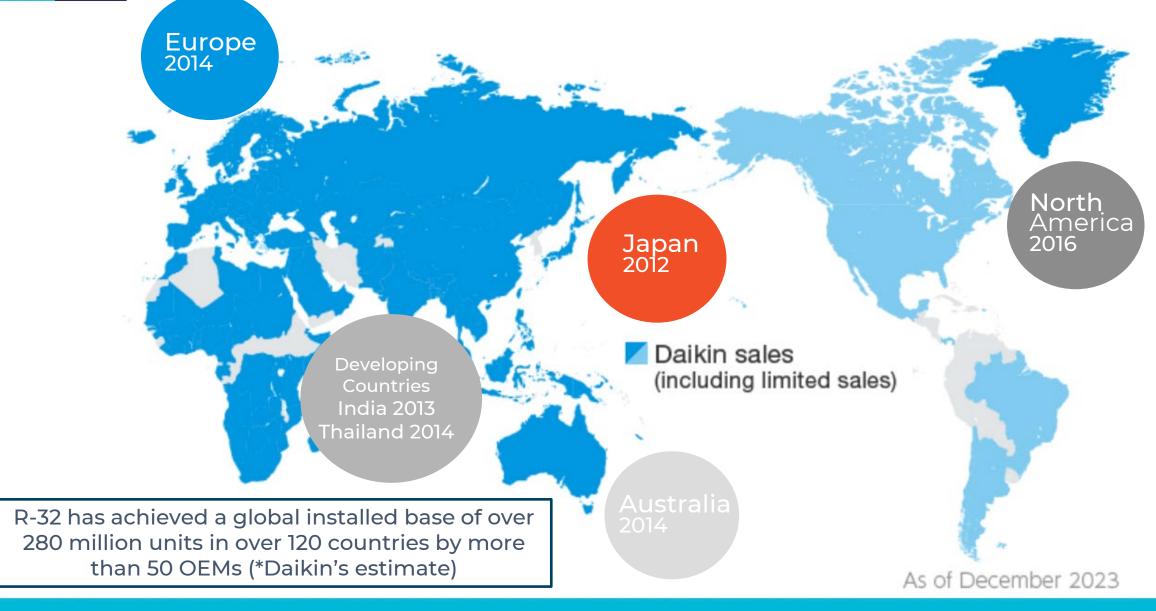


© 2021 Daikin North America, LLC

Many Factors Inform the Right Choice

- No one-size-fits all solution
- > The right choice is determined by many factors including efficiency and capacity, GWP, value, availability, cost, ease of reuse and reclamation
- The right combination results in the best value for the owner and optimal environmental value for the planet
- > Daikin has selected R-32 as the best overall replacement for R-410 based on these 5 criteria

MANY FACTORS INFORM THE RIGHT CHOICE:


	R-410A Benchmark	R-32
Global Warming Potential (GWP)	2,088	675
Total Emissions (kg CO₂-eq.)	17,263	14,916 (13.6% lower)
Composition	R-32 50% R-125 50%	R-32 100%
Refrigerant Safety Classification	A1	A2L
Temperature Glide	Yes	No
System Capacity	100%	>110%
System Efficiency	100%	>107%
Refrigerant Charge Size	-	Up to 40% smaller
Proprietary	No	No

High GWP HFC's > 700 GWP

R32

R-32 IS A PROVEN COMMODITY USED GLOBALLY

Many factors inform the right choice.

√ More eco-friendly

The biggest benefit of R32 is drastically reduced GWP levels. R32 has one-third the GWP of R410-A, which means it is much better for the environment and has a much lower impact on the ozone layer.

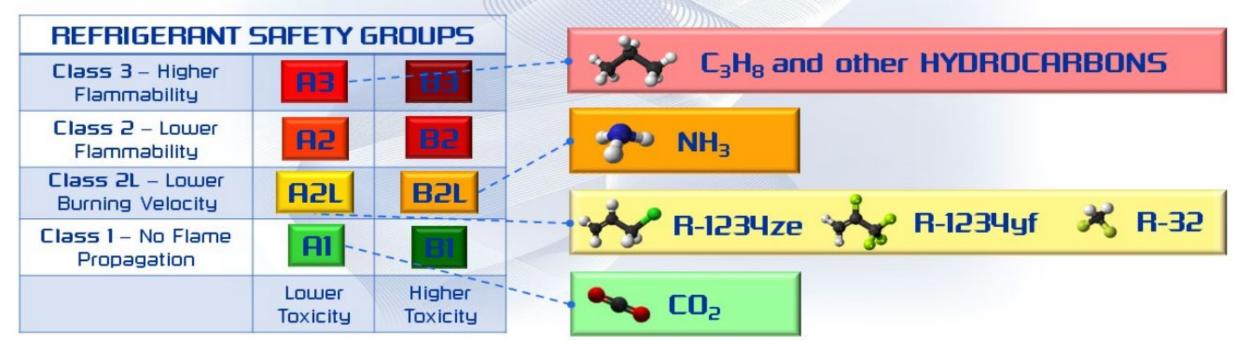
√ Less flammable

R32 refrigerant has a lower flammability than A2s & A3s, making them easier to store and transport.

√ Less toxic

R32 is less harmful to health than the "B" refrigerants, which makes for easier handling and refilling.

R 3 2 FOR MORE INFORMATION VISIT R32REASONS.COM.



R 32

- □ ISO Standard 817:2014 Refrigerants—Designation and Safety Classification establishes a system for assigning a safety classification to refrigerant gases based on toxicity and flammability.
- To express the flammability properties of the new unsaturated HFCs (referred to as HFOs) and other refrigerants with similar properties (such as Ammonia), ISO 817-2014 made 2L a separate class, characterized by burning velocities less than or equal to 10 cm/s.

Many factors inform the right choice.

√ More eco-friendly

The biggest benefit of R32 is drastically reduced GWP levels. R32 has one-third the GWP of R410-A, which means it is much better for the environment and has a much lower impact on the ozone layer.

√ Less flammable

R32 refrigerant has a lower flammability than A2s & A3s, making them easier to store and transport.

√ Less toxic

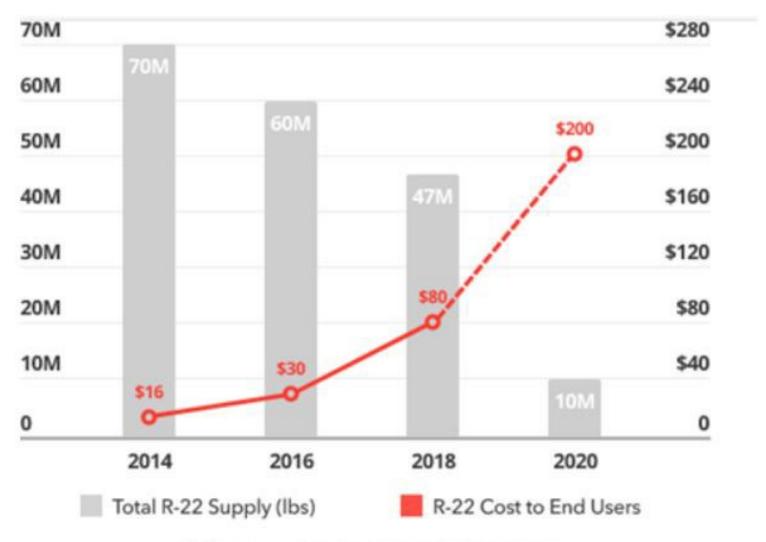
R32 is less harmful to health than the "B" refrigerants, which makes for easier handling and refilling.

√ More efficient

Up to 12% more efficient than R410A. This translates to more savings.

√ Lower Cost

 As the AIM act timeline progresses and R410A production decreases, the refrigerant will be superseded and become harder to source.


R 32 FOR MORE INFORMATION VISIT R32REASONS.COM.

Total Supply = new import + existing stockpiles + reclaimed R-22 price based on national average

Many factors inform the right choice.

√ More eco-friendly

The biggest benefit of R32 is drastically reduced GWP levels. R32 has one-third the GWP of R410-A, which means it is much better for the environment and has a much lower impact on the ozone layer.

√ Less flammable

R32 refrigerant has a lower flammability than A2s & A3s, making them easier to store and transport.

√ Less toxic

R32 is less harmful to health than the "B" refrigerants, which makes for easier handling and refilling.

√ More efficient

Up to 12% more efficient than R410A. This translates to more savings.

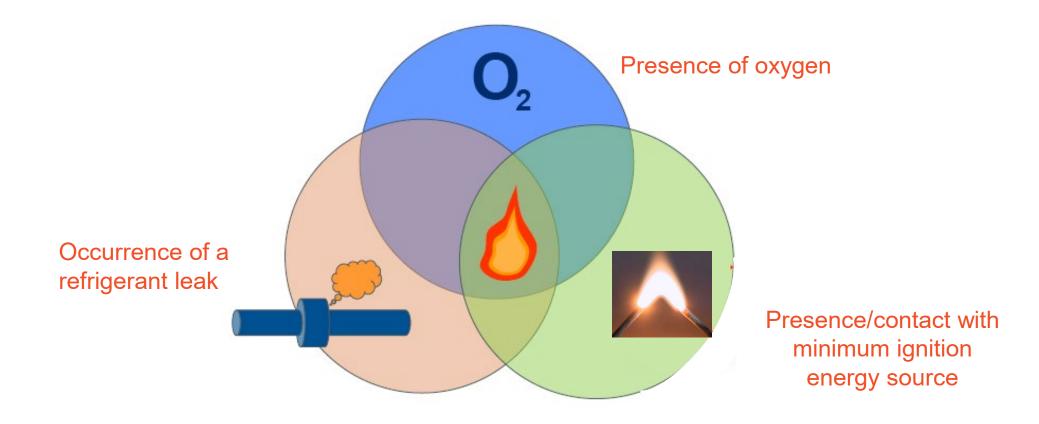
√ Lower Cost

- As the AIM act timeline progresses and R410A production decreases, the refrigerant will be superseded and become harder to source.
- R32 is an open patent that is produced by multiple manufacturers. R454B is a proprietary blend made by just one.
- 40% less charge means 40% less cost to recharge a system

R 3 2 FOR MORE INFORMATION VISIT R32REASONS.COM.

- Industry Regulatory Update
- A2L's & Refrigerant Classifications
- Flammability

Air Conditioning & Heating

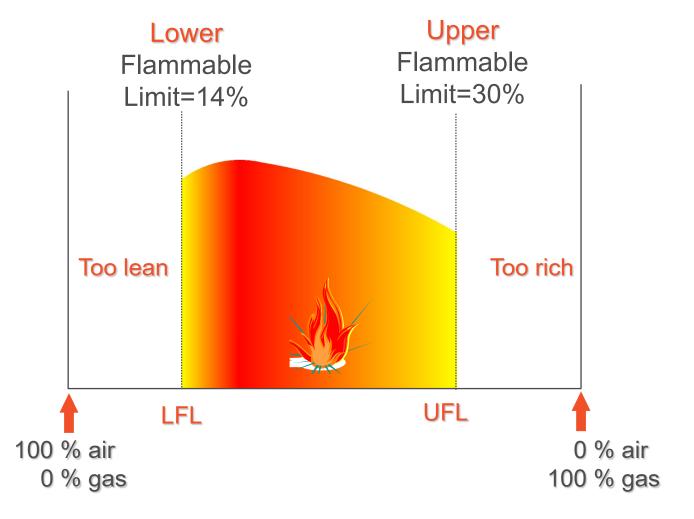


© 2021 Daikin North America, LLC

R 32

Conditions for A2L refrigerant ignition

- An ignition of any flammable agent can only be triggered if all 3 conditions are met
- Adequate measures must be taken to prevent such situations from occurring

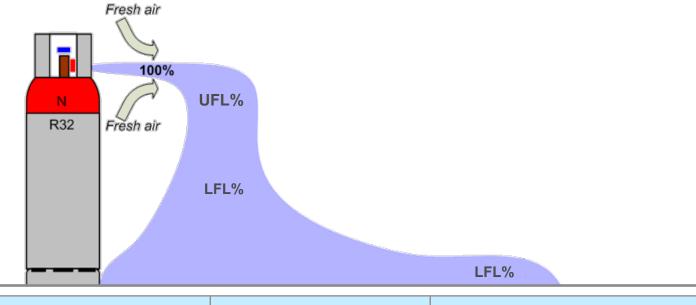


Flammable Concentration Range

 The Lower Flammable Limit (LFL) and Upper Flammable Limit (UFL) are the minimum and maximum concentrations of refrigerant in air that is capable of burning

Refrigerant Flammability Comparison

- The minimum ignition energy (MIE) is the minimum electrical spark energy, in millijoules (mJ), required to ignite a flammable gas/air mixture.
- As a reference point, consider the spark from a high-voltage spark plug. It produces 20-30 mJ of ignition energy.


Refrigerant	R-32	R-454B	R-1234yf	R-717 Ammonia	R-152a	R-290 Propane	R-600a Isobutane
Safety Group	A2L	A2L	A2L	B2L	A2	А3	А3
LFL	14.4%	11.8%	6.2%	15%	3.9%	2.1%	1.8%
Auto Ignition	648°C	496°C	405°C	651°C	440°C	455°C	460°C
Temperature	1,198.4°F	924.8°F	761°F	1,203.8°F	824°F	851°F	860°F
Minimum Ignition Energy (MIE)	30 – 100 mJ	100-300 mJ	5,000 – 10,000 mJ	100 – 300 <u>mJ</u>	0.38 <u>mJ</u>	0.25 <u>mJ</u>	0.6 – 0.7 <u>mJ</u>
Burning Velocity	6.7 cm/s	5.2 cm/s	1.5 cm/s	7.2 cm/s	23 cm/s	46 cm/s	41 cm/s
Heat of Combustion (HOC)	3,869 Btu/lb	4,420 Btu/lb	4,408 Btu/ <u>lb</u>	9,673 Btu/J <u>b</u>	2,708 Btu/lb	19,905 Btu/ <u>lb</u>	19,000 – 19,200 Btu/Jb

Density

Density of a flammable gas is important to know

A2Ls are heavier than air, when the gas escapes from a container and no ventilation is present, it will tend to spread over the bottom of the floor where it will mix with air, lowering its concentration.

	Lower limit	Upper limit
R-32 flammability limits	13.8%	29.9%

Table 9-3 M for A2L Systems Based on 7.2 ft (2.2 m) Dispersal Height a

		<u>M</u> ^c				
Ar	<u>ea^b</u>	With Cir	rculation	Without C	Circulation	
<u>ft²</u>	<u>m</u> ²	<u>lb</u> m	<u>kg</u>	<u>lb</u> m	<u>kg</u>	
100	9.3	6.9	3.1	6.9	3.1	
125	<u>11.6</u>	<u>8.6</u>	3.9	<u>8.6</u>	3.9	
<u>150</u>	13.9	10.3	4.7	10.3	4.7	
175	<u>16.3</u>	12.1	<u>5.5</u>	11.1	5.0	
200	<u>18.6</u>	<u>13.8</u>	<u>6.3</u>	<u>11.9</u>	<u>5.4</u>	
225	20.9	<u>15.5</u>	7.0	12.6	5.7	
<u>250</u>	23.2	<u>17.2</u>	<u>7.8</u>	13.3	<u>6.0</u>	
<u>275</u>	<u>25.5</u>	18.9	<u>8.6</u>	13.9	6.3	
300	27.9	20.7	9.4	14.6	<u>6.6</u>	
<u>325</u>	30.2	22.4	10.2	<u>15.2</u>	6.9	
350	32.5	24.1	10.9	<u>15.7</u>	<u>7.1</u>	
<u>375</u>	34.8	<u>25.8</u>	11.7	<u>16.3</u>	<u>7.4</u>	
400	<u>37.2</u>	27.6	12.5	<u>16.8</u>	<u>7.6</u>	

ANSI/ASHRAE Addendum a to ANSI/ASHRAE Standard 15.2-2022

Safety Standard for Refrigeration Systems in Residential Applications

Approved by ASHRAE and the American National Standards Institute on October 31, 2022

The adhesions was approved by a francing faunded Propert Committee (SPC) for which the Societies's Committee seathfolded a faundemental property for register publishing of adhesion or revisions, including proceedures for invalve, discovered consentes action on requests for change to any part of the standard. Instructions for how to subvest a change can be found on the AGMARS[®] weeken for yourse adhesing options of the standard in the SMARS[®] of the standard of the AGMARS[®] weeken for yourse adhesing options on any option of the standard of the AGMARS[®] of t

© 2022 ASHRAE ISSN 1041-2226

Table 9-4 Additional Charge Permitted for A2L Systems Using Ventilation

		<u>MV</u> -a				
<u>Ventilati</u>	ion Rate	With Cir	rculation	Without Circulation		
<u>cfm</u>	<u>m³/h</u>	<u>lb</u> m	<u>kg</u>	<u>lb</u> m	<u>kg</u>	
20	34	0.8	0.4	0.4	0.2	
40	<u>68</u>	1.4	0.6	0.7	0.3	
<u>60</u>	102	2.2	1.0	1.1	0.5	
80	<u>136</u>	2.8	1.2	1.4	0.6	
100	<u>170</u>	3.6	1.6	1.8	0.8	
120	204	4.2	2.0	2.1	1.0	
140	238	5.0	2.2	<u>2.5</u>	1.1	
160	272	5.6	2.6	2.8	1.3	
180	<u>306</u>	6.4	2.8	3.2	1.4	
200	<u>340</u>	7.0	3.2	<u>3.5</u>	1.6	
220	<u>374</u>	<u>8.4</u>	3.8	4.2	1.9	
240	<u>408</u>	<u>9.2</u>	4.2	<u>4.6</u>	2.1	
260	442	10.0	4.6	5.0	2.3	

ANSI/ASHRAE Addendum a to ANSI/ASHRAE Standard 15.2-2022

Safety Standard for Refrigeration Systems in Residential Applications

Approved by ASHRAE and the American National Standards Institute on October 31, 2022

This addression was approved by a Standing Standard Proposit Commission (SSPC), for which the Standard Commission has established a disconsistent program for regular publication of addression or rescribes, recluding procedures for training, inmented, commission action on requests for change to any part of the standard, instructions for how to subsets a change can be found on the AMPAES[®] weekfor (over authors are produced or rescribed to the commission of the commission of

The latest edition of an AS-BAS Standard may be purchased on the AS-BAS website (never advancery) or from AS-BAS Customer Service, 180 Technology Partnup, Peachtree Corner, CA 20092. Small undersignation and Sas-SS-19-197. Telephone. 404-438-400 (newthends), or not free 1-400-527-4722 (for orders in US and Canada); For regime permission, go to severe advance/greenousces.

© 2022 ASHRAE ISSN 1041-2226

Table 9-2 LFL Conversion Factor

Refrigerant	С
R-32	1.00
R-452B	1.02
R-454A	0.92
R-454B	0.97
R-454C	0.95
R-457A	0.71

But what does all of this really mean?

ANSI/ASHRAE Addendum a to ANSI/ASHRAE Standard 15.2-2022

Safety Standard for Refrigeration Systems in Residential Applications

Approved by ASHRAE and the American National Standards Institute on October 21, 2022

This additionals was approved by a Standing Standard Proposit Committee (SSPC) for which the Standard Committee and Standard Research Committee (SSPC) for which the Standard Committee and Standard Committee (SSPC) for standard Committee (SSPC) fo

The latest edition of an ASHRAE Standard may be purchased on the ASHRAE website (www.ashrae.org) or from ASHRAE Customer Service, 160 Technology Parkney, Peachtree Corners, GA-20092, E-mail undertiglicatement, Eas-276-519-2197. Telephone. 464-636-4001 (workforder), or not free 1-400-527-4722 (for orders in US and Canada), For reports permission, to is worn administrational processions.

© 2022 ASHRAS ISSN 1041-2236

Factory Charge & Minimum Room Size

	ALZS5BA 1810A*	ALZS5BA 2410A*	ALZS5BA 3010A*	AL755BA 3610A*	ALZS5BA 4210A*	ALZS5BA 4810A*	ALZS5BA 6010A*
NOMINAL CAPACITIES							
Cooling (BTU/h)	18,000	24,000	30,000	36,000	42,000	48,000	60,000
Heating (BTU/h)	18,000	24,000	30,000	36,000	42,000	48,000	60,000
SEER2	15.2	15.2	15.2	15.2	15.2	15.2	15.2
Decibels	70.0	73.0	73.0	71.1	72.0	73.6	74.8
COMPRESSOR							
RLA	9.3	11.4	12.9	18.4	16.1	21.6	30.2
LRA	44.3	59.3	76.0	88.0	112.2	127.7	178.0
Stage	Single	Single	Single	Single	Single	Single	Two
Туре	Scroll						
CONDENSER FAN MOTOR							
Horsepower	1/6	1/6	1/6	1/6	1/4	1/4	1/5
FLA	0.95	0.95	0.97	1.0	1.3	1.3	1.0
REFRIGERATION SYSTEM							
Refrigerant Line Size ¹							
Liquid Line Size ("O.D.)	1/4"	1/4"	1/4"	3/8"	3/8"	3/8"	3/8"
Suction Line Size ("O.D.)	5/8"	5/8"	5/8"	3/4"	7∕8"	7∕8"	7∕8"
Refrigerant Connection Size							
Liquid Valve Size ("O.D.)	3/8"	3/8"	3/8"	3/8"	3∕8"	3/8"	3/8"
Suction Valve Size ("O.D.)	3/4"	3/4"	3/4"	5.9 lbs.	7∕8"	71/8"	7∕8"
Valve Connection Type	Sweat						
Refrigerant Charge (oz.)	88	83	94	95	139	174	185

Factory Charge & Minimum Room Size

GH5SAN5: Product Data

Physical Data

			1						
UNIT SIZE SERIES	18	24	30	36	42	48	60		
Compressor Type		Scroll							
REFRIGERANT			Puro	on Advance [™] (R-45	54B)				
Factory Charge Ib (kg)*	6.5(2.95)	6.5(2.95) 5.4(2.45) 6.1(2.77) 7.6(3.45) 7.3(3.31) 10.5(4.76) 8.7(3.95)							
Outdoor Heating Piston #	42	46	52	52	61	65	70		
COND FAN			Forward Swep	ot or Propeller Type	e, Direct Drive				
Air Discharge				Vertical					
Air Qty (CFM)	1900	3500	3000	3500	3000	3800	4300		
Motor HP	1/12	1/10	1/10	1/4	1/5	1/4	1/4		
Motor RPM	800	825	825	825	1100	1110	800		
COND COIL									
Face Area (Sq ft)	17.2	19.3	21.4	17.2	17.2	21.4	22.6		
Fins per In.	20	20	20	20	20	20	20		
Rows	1	1	1	2	2	2	2		
Circuits	7	6	7	8	10	12	12		
VALVE CONNECT. (In. ID)									
Vapor	5/8	5/8	3/4	3/4	7/8	7/8	7/8		
Liquid	3/8"								
REFRIGERANT TUBES* (In. O	D)								
Rated Vapor [†]	5/8	5/8	3/4	3/4	7/8	7/8	1 1/8		
Rated Liquid Line [‡]		-		3/8"					

Table 9-3 M for A2L Systems Based on 7.2 ft (2.2 m) Dispersal Height a

		<u>M</u> .c					
Aı	<u>ea</u> b	With Circulation Without Circulati			<u>Culation</u> <u>Without Circulation</u>		
<u>ft²</u>	<u>m</u> ²	<u>lb</u> m	<u>kg</u>	<u>lb_m</u>	<u>kg</u>		
83	9.3	6.9	3.1	6.9	3.1		
104	<u>11.6</u>	8.6	<u>3.9</u>	<u>8.6</u>	3.9		
<u>150</u>	<u>13.9</u>	<u>10.3</u>	4.7	10.3	4.7		
<u>175</u>	<u>16.3</u>	<u>12.1</u>	<u>5.5</u>	11.1	5.0		
200	<u>18.6</u>	<u>13.8</u>	<u>6.3</u>	11.9	5.4		
225	20.9	<u>15.5</u>	7.0	12.6 5.7			
<u>250</u>	23.2	<u>17.2</u>	7.8	Table 9-2 LFL Conversion Factor			

3-ton R32 - 5.9 lbs. 3-ton R454b - 7.6 lbs.

<u>223</u>	<u>20.9</u>	15.5	<u>/.0</u>	12.6 5.7	
250	23.2	17.2	7.8	Table 9-2 LFL Conversion Factor	
<u>275</u>	<u>25.5</u>	18.9	<u>8.6</u>	Refrigerant	С
<u>300</u>	<u>27.9</u>	20.7	<u>9.4</u>	R-32	1.00
<u>325</u>	30.2	22.4	10.2	R-452B	1.02
350	<u>32.5</u>	24.1	10.9	R-454A	0.92
<u>375</u>	34.8	<u>25.8</u>	11.7	R-454B	0.97
400	37.2	27.6	<u>12.5</u>	R-454C	0.95
				R-457A	0.71

There's more than one good reason to choose R-32.

HOME 32 RE

32 REASONS RESC

RESOURCES

R32 TRAINING

www.r32reasons.com

